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I n  this paper, we apply two theoretical turbulence models, DIA and the recent GISS 
model, to study properties of a turbulent channel flow. Both models provide a 
turbulent kinetic energy spectral function E ( k )  as the solution of a nonlinear 
equation ; the two models employ the same source function but different closures. 
The source function is characterized by a rate n,(k) which is derived from the 
complex eigenvalues of the Orr-Sommerfeld equation in which the basic flow is taken 
to be of a Poiseuille type. The OrrSommerfeld equation is solved for a variety of 
Reynolds numbers corresponding to available experimental data. A physical 
argument is presented whereby the central line velocity characterizing the basic flow, 
Uk,  is not to  be identified with the U,, appearing in the experimental Reynolds 
number. A renormalization is suggested which has the effect of yielding growth 
rates of magnitude comparable with those calculated by Orszag & Patera based on 
their study of a secondary instability. From the practical point of view, this 
renormalization frees us from having to solve the rather time-consuming equations 
describing the secondary instability. This point is discussed further in $13. In  the 
present treatment, the shear plays only the role of a source of energy to feed the 
turbulence and not the possible additional role of an interaction between the shear 
of the mean flow and the eddy vorticity that would give rise to resonance effects 
when the shear is equal to or larger than the eddy vorticities. The inclusion of this 
possible resonance phenomenon, which is not expected to affect the large-eddy 
behaviour and thus the bulk properties, is left for a future study. The theoretical 
results are compared with two types of experimental data: (a)  turbulence bulk 
properties, table 4, and ( 6 )  properties that  depend strongly on the structure of the 
turbulence spectrum a t  low wavenumbers (i.e. large eddies), tables 5 and 6. The 
latter data are taken from recent experiments measuring the changes in the 
propagation of an electromagnetic wave through a turbulent channel flow. The 
fluctuations in the refractive index of the turbulent medium are thought to be due to 
pressure fluctuations whose spectral function n ( k )  is contributed mostly by the 
interaction between the mean flow and the turbulent velocity. The spectrum n ( k )  
must be computed as a function of the wavenumber k ,  the position in the channel x2, 
and the width of the channel A .  The only existing analytical expression for Il (k) ,  due 
to Kraichnan, cannot be used in the present case because it applies to the case 
x2 = 0 and A = CO, which corresponds to the case of a flat plate, not a finite channel. A 
general expression for n(k, 2, ; A )  is derived here for the first time and employed to  
calculate the fraction of incoherent radiation scattered out of a coherent beam. In 
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3 11, we treat anisotropy and show how to extend the previous results to include an 
arbitrary degree of anisotropy a in the sizes of the eddies. We show that the 
theoretical one-dimensional spectra yield a better fit to the data for a degree of 
anisotropy (a x 4) that is within the range of experimental values. We also extend 
the expression for H(k, x2 ; A )  to n(k, x2 ; A ,  a) and compute the pressure fluctuations 
for different values of a. Similarly, we evaluate the fraction of electromagnetic 
energy scattered by an anisotropic turbulent flow and find a good fit to the 
laboratory data for a value of a x 4-6. Scaling formulae for the scattered fraction are 
presented in 3 12. These formulae reproduce the calculated results, both with and 
without the addition of anisotropy, to better than 5%.  

Theoretical problems however remain which will require further study : among 
them, lack of backscatter (i.e. the transfer of energy from large to small 
wavenumbers) in the GISS model, possible resonance effects between the shear and 
eddy vorticity, behaviour of the one-dimensional spectral function at low 
wavenumbers, and the role of the secondary instability. These topics are now under 
investigation. 

1. Introduction 
Experimental data on turbulent channel flow (see Laufer 1951 ; Comte-Bellot 

1963; Clark 1968; Hussain & Reynolds 1975; Willmarth 1975; Johansson & 
Alfredsson 1982) can be used to test the validity of theoretical descriptions of 
turbulence. The latter can be broadly divided into two categories : numerical 
simulation of the Navier-Stokes equations and theoretical closure models. 

While direct numerical simulations (Kim, Moin & Moser 1987 ; Moin & Kim 1982) 
have successfully reproduced several experimental data, they are limited to low 
Reynolds numbers since the number of grid points required increases according to 
the t power of the Reynolds number and the number of time steps needed for an 
accurate simulation increases according to the 4 power, yielding a rate of increase of 
Reynolds number to the third power. For high-Reynolds-number flows, the required 
number of grid points rapidly outstrips presently available computational facilities. 
To treat high-Reynolds-number turbulent flows, large-eddy simulations make use of 
(empirical) subgrid-scale models (Moin & Kim 1982). 

Theoretical closure models can be broadly divided into two categories : single-point 
and two-point closure models. The most well known among the former is the one 
originally proposed by Hanjalic & Launder (1972) (HL), which proved successful in 
describing several types of shear flows. The HL model provides three coupled 
differential equations for the Reynolds stress tensor 712, the energy dissipation rate 
E ,  and the turbulent kinetic energy K ,  defined as the integral over all wavenumbers 
k of the turbulent energy spectral function E ( k ) .  While the HL model has proven 
very successful in the detailed description of several types of shear flows, its main 
drawback is the presence of six free parameters that the model cannot determine. 

In  the early seventies, Leslie (1973) was the first to consider in detail the possible 
application of two-point closure models to turbulent channel flow. Upon realizing the 
unmanageable complexity of the DIA equations for the general case of shear flow (see 
Kraichnan 1964 b ) ,  Leslie tried to develop a systematic programme of simplifications 
for the two-point closure equations by restricting the analysis to the case of 
anisotropic but homogeneous flow (i.e. with constant shear) in the hope of deriving 
in a deductive, parameter-free fashion, the empirical one-point closure relations of 
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Hanjalic & Launder (1972). By his own admission, Leslie did not succeed in his 
attempt. 

Since Leslie’s work was not followed by other systematic attempts to apply two- 
point closure models to turbulent channel flow (see however Tchen 1953 and Hinze 
1975), one is left today with: ( a )  the successful one-point HL closure model which, 
however, contains six free parameters to be determined from experiments, (b )  direct 
numerical simulations with their intrinsic Reynolds-number limitations, and ( c )  
large-eddy simulation which must rely on the use of a subgrid-scale model. 

The lesson learned from Leslie’s work is that a full treatment of the anisotropy is 
just not possible a t  present. It may also mean that to make progress one must begin 
with exactly the opposite point of view, namely with the simplest treatment, so as 
to be able to incorporate progressively more complex models of anisotropy. To be 
specific, in this paper we shall adopt the following approach: first, we employ two 
models of turbulence : the growth instability spectral solution (GISS) model and the 
direct interaction approximation (DIA) that differ in the degree of complexity with 
which they treat the nonlinear transfer terms. Both models have already been 
validated in the case of isotropic turbulence (Canuto, Goldman & Chasnov 1987) 
where they were shown to yield similar bulk properties. The GISS model is much 
simpler to use than DIA which requires rather extensive numerical labour, although 
it cannot claim the a priori validation that makes DIA an attractive theory. Since 
the quantities calculated with these two models refer to isotropic cases, whereas in 
the case of channel turbulence the mean flow is known to stretch the eddies in the 
streamwise direction, the expressions for the quantities of interest (e.g. the one- 
dimensional energy spectrum, the amplitude of the pressure fluctuations, and the 
attenuation of a laser beam) must be expressed in the physical, anisotropic system 
where the wavenumbers are denoted by k ,  with & 9 &, and where the basic 
function is the turbulent energy spectral function, E(k’). The transformation from 
the k to the k system is done via the introduction of an anisotropy function, a(k’), 
a measure of the stretching of the eddies in the streamwise direction, such that 
k; = kJa ,  & = k,, and k: = k,. In  this paper, we have investigated two functional 
forms for a ( k ) .  

(i) a = constant 
We show that with 5 < a < 8, we obtain a considerable improvement with respect 

to the isotropic case (for which a = 1) for three experimentally measured sets of data 
on : (a) one-dimensional turbulent spectra at different Reynolds numbers, figure 12, 
(b)  pressure fluctuations at the wall of a turbulent channel flow, figures 14 and 15, and 
(c) propagation of electromagnetic waves in turbulent channel flow, figure 16. We 
may further notice that the value for the pressure fluctuations so obtained is very 
close to that derived using full numerical simulations of the NavierStokes equations, 
which have also indicated that the degree of stretching for the largest eddies is 
approximately that given by the above value of a. 

The assumption of constant a implies that all the eddies, irrespectively of their 
sizes, are stretched by exactly the same amount by the mean flow. This assumption 
clearly cannot hold for the inertial eddies that are usually isotropic, having 
originated from multiple break-ups of the larger eddies and having therefore 
undergone a great deal of isotropization. For this reason, we have investigated a 
second function for a. 
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(ii) a = a(k) 
The function chosen (see (89) and the accompanying text) is constant for small 

wavenumber and monotonically decreases to  unity with increasing wavenumber. 
This is the simplest functional form that embodies the correct physics. It was found 
that the use of this function with a = 5 a t  small wavenumbers results in a better fit 
to the one-dimensional energy spectra than with constant a. 

Concerning notation, while in the DIA the energy spectral function is denoted by 
E ( k ) ,  in the GISS model use is made of the function F ( k )  = 2E(k). 

2. The GISS model 
Since the model has been described in detail in Canuto el al. (1987), we shall quote 

here only the basic equations. If e ( k )  is the energy input from the external source into 
the interval [0, k], the turbulent energy spectral function E ( k )  is found as a solution 
of the following equations : 

r k  roo 
~ ( k )  = 2v J k2E(k)  dk+ J T(k) dk, 

0 k 
where ~ ( k )  is defined as 

~ ( k )  = 2 (n,(k) + v k 2 ) E ( k )  dk. I 
The right-hand side of (.l) tells us that the energy input e ( k )  is partly dissipated by 
molecular viscosity, v ,  and partly transferred by the nonlinear term, T(k). The DIA 
and the GISS models differ in the way they describe the transfer function T(k). In  
both models, however, one must prescribe the function n,(k) which represents the 
rate a t  which energy is being fed into the system. A discussion of how to compute this 
quantity will be given in $4. For the time being, we shall only note that the structure 
of n,(k) must be such that it depends on the source of energy for the turbulent flow, 
namely the shear itself. That this is indeed the case will be shown in (24) and (25). 
As for the transfer term T(k), it is taken to be the product of a turbulent viscosity 
v,(k) ,  times a mean-square vorticity y(k), i.e. 

where (4) 

Here n,(k) is a correlation time between eddies, to be determined by a closure. As 
shown in Canuto et al. (1987), the GISS model closure can be expressed as 

2yn,(k) = n,(k) + [ n m  + 4 ~ ( k ) i ; ,  (5) 
which represents a balance between the source timescale nil and the inertial 
timescale y-2. We may note that when ~ ( k )  + E  = constant and n, FZ, yi, (1) admit~s the 
well-known Heisenberg-Kolmogorov inertial spectrum E( k )  K k-9. As discussed in 
Canuto et al. (1987), the GISS model closure, (5), is able to reproduce both the inertial 
subrange as well as the low-wavenumber region which contains most of the energy, 
which dominate the bulk properties of interest here. 

Once a source function, n,, is chosen, (1)-(5) yield the energy spectral funct,ion 
E ( k ) .  The GISS model contains only one parameter y ,  see ( 5 ) ,  which is fixed once and 
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for all since it is related to the Kolmogorov constant KO by the expression (Canuto 
et al. 1987) 

(6) 

The value adopted here for the Kolmogorov constant is KO = 1.65. 
As discussed in Canuto et al. 1987, the GISS model has been applied to a variety 

of cases with results satisfactory not only with respect to the available data but also 
with respect to the results of other models like DIA, the renormalization group 
(RNG) method, etc. (For details, see table VII of Canuto et al. 1987.) 

3. The DIA model 
Perhaps the most well known of the presently available theories to describe fully 

developed turbulence is Kraichnan’s (1964 a )  direct interaction approximation (DIA) 
which in turn has given rise to other theories in the same spirit. We shall not discuss 
here the eddy-damped quasi-normal Markovian (EDQNM) approximation, which is 
phenomenological in nature, since the eddy correlation timescale (which within the 
DIA is determined by solving the integral equation satisfied by the infinitesimal 
response function) must be chosen using external inputs. A very complete description 
of EDQNM, its successes and limitations in describing ‘universal ’ properties, can be 
found in Lesieur (1987). 

Since the DIA has been described in detail in Leslie (1973), we shall present only 
the basic equations for the turbulent energy spectral function. The DIA is a well- 
understood approximation to the nonlinear transfer terms (see Martin, Siggia & Rose 
(1973) and it can be regarded as a fully deterministic theory without free parameters. 
Since the DIA formalism has in the past been applied primarily to describe those 
properties of turbulence that do not depend on the specific nature of the source 
function, experimental data concerning bulk properties could not be deaIt with. To 
include them, the DIA was recently applied with good results to a set of model 
equations with a source function appropriate to high-Rayleigh-number convection. 
Perhaps the main drawback in the application of the DIA formalism to specific cases 
of interest has been the rather intimidating nature of the equations describing the 
turbulent energy spectral function, E ( k ) .  Moreover, with the presence of the 
infinitesimal response function Gfk),  one must in fact solve two coupled integral 
equations for E ( k )  and G ( k ) .  These equations may be written (Hartke, Canuto & 
Dannevik 1988) 

and 

= - 27r lr kqp,b(k, q, p )  dq dp ds’G(q, t - s‘) &(p,  t - s’) G( k, s - s’) + 6(t - 8) , (8) l 
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where &(k, t - s )  = i(u,(k, t )  uf( -k, s)), u(k, t )  is the spatial Fourier transform of the 
turbulent velocity, the angular brackets denote a realization average, t and s are time 
variables, the energy spectrum is given by E ( k )  = 4xk2&(k, 0 ) ,  b(k ,  q , p )  = 
( q / k )  (xy + z3) with x, y, and z the cosines of the angles opposite k ,  q,  andp, respectively, 
6(x) is the Dirac delta function, and the d over the wavenumber integrals indicates 
that the region of integration is restricted to a subdomain in which k ,  q, and p form 
a triangle. Once the growth rate ns(k) is specified, ( 7 )  and (8) can be solved for the 
energy spectrum and the infinitesimal response function. 

The well-known drawback of the DIA, i.e. the prediction of a -$ rather than -p 
inertial range, has little effect on the bulk properties of interest here since the inertial 
region is energy-poor compared with the low-wavenumber region. 

4. The rate n,(k) 
Neither the DIA nor the GISS model can be expected to fix the functional form of 

n,(k) which must be provided by considerations other than the ones that led to the 
equations for the kinetic energy spectral function E ( k ) .  Because of (2), prescribing 
n,(k) is physically equivalent to prescribing an equation for the, energy rate e (k ) .  Our 
model can thus be considered a two-equation model, one for the kinetic energy E ( k )  
and the second equation for e ( k )  which must be described from outside the problem 
via the rate ns(k). 

Since n, characterizes a fully turbulent regime, long after the transition from the 
laminar state has occurred, i t  cannot a priori be identified with the instability 
function nt-' that characterizes the transition between laminarity (L) and turbulence 
(T), even though the processes they represent are physically equivalent. To derive 

ns(k) or, equivalently, e (k ) ,  one would have to construct another equation thus 
making the model much more complex. We have already shown (Canuto et al. 1987) 
that physical arguments can be very helpful. Some general considerations are in 
order. First, i t  is known experimentally that, for example, in thermal convection the 
large-scale structures that one observes a t  the transition do persist in the turbulent 
phase, i.e. their structure survives the strongly diffusive and shearing action of a 
turbulent flow. This result is perhaps not unexpected since the large-scale structures 
have the longest lifetimes of all the eddies and also because their structure is affected 
primarily by the source rather than by the nonlinear transfer interactions. Stated 
differently, since the largest eddies cannot originate from even larger ones, their sole 
source of growth is the source itself. Second, from a mathematical point of view it 
would clearly be greatly advantageous if one could employ, even if partially, the 
well-established mathematical framework of stability theory to  gain information 
about the form of the function n,(k). Here we want to make a clear distinction 
between the shape of the function ns( k )  and its amplitude. We shall propose, and try 
to justify, that the former can be arrived at by the use of the Orr-Sommerfeld 
equation, while the latter can be arrived a t  only by providing a way to account for 
the presence of a turbulent flow. The latter is in fact likely to renormalize in a 
significant way the amplitudes of the parameters characterizing the laminar regime. 
This in turn translates into a renormalization of the Orr-Sommerfeld equation itself. 
The success of the calculations presented in this paper will be seen to  depend to a 
large extent on the proper implementation of this renormalization procedure. Since 
the latter depends on the specific problem at hand, i t  cannot be formulated in a 
universal fashion. Each physical problem brings in its own characteristic features. 

nL-T , one has a well-defined mathametical formalism, the stability theory. To derive 
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FIQURE 1. The expected general shape of the growth rate n,(k) m. k. At large wavenumbers, 
n,(k) tends to -vk2 .  

From the point of view of trying to  understand a complex phenomenon like 
turbulence, we consider this to be an advantage, for the method requires an 
understanding of the renormalization that the most prominent features of the 
laminar flow have undergone. The use of an Orr-Sommerfeld type of equation to 
determine the functional form of the rate n, is proposed here because such a function 
has features of almost universal character that are bound to be sufficiently well 
described by such an approach. First, consider the shape of n,(k). For wavenumbers 
less than k,  = l / L ,  where L is the geometrical dimension of the system under 
consideration, there cannot be any forcing and so n, must be less than or equal to  
zero. On the other hand, for large values of k ,  i.e. when one deals with small eddies, 
the dominant mechanism is kinematic viscosity which contributes a factor - vk2,  i.e. 
the function n, must become negative a t  some large value of k .  In  Canuto et al. 1987 
i t  was shown that the GISS model requires that for large k,n, - -vk2 quite 
independently of its behaviour at low wavenumber, i.e. of the specific mechanism 
that feeds energy into the turbulent regime. One may therefore conclude that the 
general shape of this function must be of the form shown in figure 1. In  our 
experience with different types of turbulence, i.e. grid turbulence, thermal 
convection, and shear, we have indeed verified that the physical n,(k) has the form 
of figure 1 .  For example, in the case of grid turbulence where both the kinetic energy 
spectral function E(k) and the nonlinear transfer term T(k)  have been measured 
experimentally, one can derive n,(k) directly from the data since from ( 1 )  and ( 2 )  it 

T(k)  follows that 
2n,(k) = -- 

E ( k ) .  
The functions E(k) and T(k)  are presented in figures 14 and 16 of Canuto et al. 1987. 
As one can see, the ratio does inded have the shape of figure 1 .  

A second, parallel argument as to the validity of an Om-Sommerfeld-type 
equation as a guide to the functional form of n, can be seen by using a procedure first 
suggested by Synge (1938) whereby the Om-Sommerfeld equation (see Synge 1938; 
Lin 1955; Koppel 1964; Drazin & Reid 1982) is formally rewritten so as to exhibit 

(9) 
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the instability function or growth rate n, (we shall omit the superscripts L-T). The 
result is (see (24) below) 

which shows, as expected on physical grounds, that n, is composed of two terms: a 
source term proportional to the shear 712, and a sink proportional to the viscosity v. 
The Orr-Sommerfeld equation further predicts that the shear peaks near the walls 
(see figure 4.21 of Drazin & Reid 1982), thus implying that in that region energy is 
extracted from the mean flow and fed into turbulence. Experimentally, it is known 
(see figure 5.5 of Townsend 1976) that  the main source of energy production, i.e. of 
B (  k ) ,  occurs precisely in that region. Thus, the Orr-Sommerfeld equation predicts 
correctly the physically important feature of a region of instability. There, the main 
physical process is intrinsically the same as the one that characterized the transition 
from laminarity to turbulence. That feature has thus survived even in the presence 
of turbulence, which one may hope can be accounted for by a process of 
renormalization, for which we shaIl propose two methods and show that they yield 
very similar results. 

We choose a coordinate system in which the mean flow is in the x-direction with 
one wall of the channel a t  y = -D and the other at y = D. Consider the well-known 
laminar Poiseuille profile (Townsend 1976) with g = y / D ,  

(10) n,(4 = A7,,(k) - vB(4,  

U(y) = Uk(1-g2), (11)  

with Uk = $Urn, Urn = (D2Ap/3vl), where Ap/ l  is the pressure drop along the channel 
of width 2 0  (we have taken unit density). 

Since Uk cannot be identified with the experiniental value of the mean flow at 
midchannel, we must find a way to renormalize it so as to take into account the 
presence of turbulence. We begin by defining a linear Reynolds number R, 

R, = UkD/v.  (12) 
Introducing the shear stress a t  the wall, ro = D(Ap/ l )  and the corresponding 
Reynolds number R, = 7i D/v ,  we find 

R, = (131 

It remains to relate R, to the experimental Rexp = (UoD/v ) ,  where Uo is the 
measured centreline (i.e. midchannel) velocity. To do so, recall that the ratio Rexp/R, 
can be expressed alternatively as (see Clark 1968 ; Hussain & Reynolds 1975 ; Monin 
& Yaglom 1975) ( K  = 0.41, B = 5.1) 

1 
-lnR,+B, 9.268R:kO,B9, 25+3.5 x lOP3R,. (14a, b, 4 

The renormalization of Uk, or equivalently of R,, is now complete since all the terms 
can be expressed in terms of Rexp. 

A second approach for renormalizing the laminar profile can be devised by 
considering that the experimentally measured mean velocity field, U( y ) ,  does indeed 
retain some vestiges of the laminar profile in the region near the walls where the 
energy is being produced. This can be seen by recalling the experimental form of U(y) 
as given for example in Monin & Ya.glom (1975), i.e. 

W Y )  = U,RT(1--IYl)> R,(1-lgl) d 10, (15a, b )  

u(Y) = u7(~1nR,(1-1~1)+5.1), RT(l-lg!) > 10, (16a, b )  

K 
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Rex* R ,  R m  rl r2 

104 500 8 735 12.55 9.54 
2~ 104 925 17659 21.00 16.15 
3 x  lo4 1331 26 633 29.00 22.20 

TABLE 1. Pu'umerical results showing a comparison between the renormalizations (13) and (18) 

and figure 5.5 of Townsend (1976) which shows that the maximum production occurs 
a t  the point where the linear regime changes t,o the logarit'hmic one. To renormalize 
the profile ( l l ) ,  we must eliminate the pressure gradient in terms of some other 
physical characteristic of the turbulent regime. We shall proceed as follows : Since 
both the profile (11) and the experimental one given by (16) are linear in the region 
where energy is being produced most efficiently, we shall require that the slope of the 
two functions be the same as y goes to -D so as to assure that the two are identical 
in that region. This implies that A p / l =  q / D ,  which in turn implies that  

U(Y) = Uiw-y2) ,  (17) 

with T-TiL = (vR,2/2D). In  this case we note that the renormalization for U,L is given by 

In table 1, we present some numerical results that show how the two renor- 
malizations, (13) and (18), yield similar results (rl = Rk/72, r2 = R:/3R,). 
Considering the empirical nature of some of the relations employed in the previous 
derivation, the agreement of the results calculated using the two methods may be 
considered quite good. 

It is probably not a coincidence that for Rex, = lo4, we get a renormalization 
factor that is very close to the one first obtained by Reynolds & Tiederman (1967) 
more than twenty years ago and recently reconfirmed by Ierley & Malkus (1988). 
Both studies point out that the use of the experimental form of Uex,(y, Re,,) in the 
Orr-Sommerfeld equation yields stable solutions, i.e. n, < 0, if it is assumed that the 
R>eynolds number appearing explicitly in the Orr--Sommerfeld equation, Ros, which 
is in effect a viscosity, is the same as the Rex, entering Uexp(y, Rexp).  On the other 
hand, if Ro, is left as a free parameter, unstable solutions (n, > 0) can be obtained 
if 

(19) 

In conclusion, the rate n, entering in ( 2 )  is not the rate that characterizes the 
transition from laminarity to turbulence. Rather, it represents the rate at  which 
energy is pumped into the system in a fully turbulent regime. In  the case of channel 
flow, a region can be isolated near the walls where there is an instability in the sense 
that the energy is being extracted from the mean flow and given to the turbulence. 
In  that region, the velocity profile is linear. We have tried to extract information 
about the rate at which such energy is transferred from one type of flow to the other 
by using the Orr-Sommerfeld equation in which, however, the strength of the mean 
flow was adjusted to match the experimental one. In  that sense, the Orr-Sommerfeld 
equation must be viewed more as a phenomenological tool rather than the exact 
equation that i t  really is when one deals with the very different problem of the 
transition between laminarity and turbulence. 

Ro, - (10 - 15) Rexp. 
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5. Solution of the Orr-Sommerfeld equation 
We now proceed to show how the growth rate n, can be computed from the 

solution of the well known Orr-Sommerfeld equation (see Synge 1938; Lin 1955; 
Koppel 1964; Drazin & Reid 1982). Measuring lengths in terms of the channel half- 
width, D, and velocities in terms of the laminar centreline mean velocity, U t ,  the 
Orr-Sommerfeld equation can be writ,ten as 

where 9 = d/dy, 01 = k,D, di = k,D,  y = y/D, 9 = U / U t ,  c = c/U;,  k is the 
wavenumber, k2, = k:+k,2, and c is the complex phase speed. In  deriving (20), the 
mean flow was taken to be in the x-direction and the channel is bounded by two 
infinite plane-parallel walls at y = +D.  

For a Poiseuille flow, 9 ( y )  = 1 - y 2  is used and the boundary conditions v = 
dv/dy = 0 are imposed at y = & 1. If we further define 8, by aR, = d,, we obtain 

then the solution of (20) yields for a given the complex eigenvalue c as a function 
of di .  Actually, for a given di, there is a large number of discrete complex 
eigenvalues C. However, only one of the c has a positive imaginary part for 
some range of di which leads to growth of the instability. Defining the growth rate 
n, = k, Im ( c )  (where Im stands for the imaginary part of the enclosed function), the 
solution of (20) yields 

n, = -&Im ( c )  cos$ vs. 2,  

for a given value of 8. One can easily see that the maximum value of n, (the most 
dangerous mode) corresponds to taking cos 45 = 1, i.e. k, = 0. To compare our results 
with experimental data, we need to change the velocity normalization from tne 
undisturbed centreline mean velocity, U:, to the experimental centreline mean 
velocity U,. This is done by multiplying (22) by U,/U; = Rexo/RL. Hence, the desired 

(22) ut 
D 

growth rate is 
n, u, 
n* D ’  - vs. k, D ,  where n,  = - 

for different values of R,  or, equivalently, of Rex* = U, Dlv .  

6. Determination of k i  
Equation (23) is not yet the final result, for it gives n, as a function of k,.  However, 

since homogeneity has been assumed in the application of the DIA and in the 
construction of the GISS model, they require the knowledge of the growth rate as a 
function of the total wavenumber, k. Channel flow is inhomogeneous in the direction 
perpendicular to the channel walls (the y-direction) so that an application of the 
model equations requires the construction of a wavenumber in the y-direction, i.e. 
k, = k,(k,). The application of a model which assumes homogeneity to a manifestly 
inhomogeneous flow may be criticized on first principles, yet we have learned from 
Leslie’s (1973) work that the problem is analytically a very difficult one and trade- 
offs must be made to simplify it in order to make it solvable. We have kept as much 
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as possible of the essential physics in the model intact, consistent with the necessity 
of keeping the problem solvable. One of these trade-offs is our inability to describe 
the variation in the details of the flow in the y-direction. All of our calculated bulk 
properties represent an average of these properties over the inhomogeneous direction. 
We therefore proceed to find a suitable relationship between k, and k,. Following the 
original work of Synge (1938),  we multiply the Orr-Sommerfeld equation (20) from 
the left by w* (where the * denotes complex conjugation) and integrate the result over 
y from - D  t o  +D.  Separating the real and imaginary parts, one obtains for the 
growth rate, n, = k, Im ( c ) ,  the expression 

where U’[k,(uw* +u*w) +~,(ww* + w*w)] dy (251 

and 

Equations (24)-(26) have a simple physical interpretation. The first term on the 
right of (24) is a ‘production term’, since it provides the interaction between the 
shear s = U’(y) in the mean flow and the Reynolds stress tensor: it gives a positive 
contribution to n,. The second term is proportional to the viscosity, v, and is always 
negative. It must clearly dominate a t  very large wavenumbers where the only 
remaining physical mechanism is kinematic viscosity. As we know, the latter enters 
the Navier-Stokes equations in the form -vk2.  On that basis, we shall therefore 
identify the coefficient of v with k2 ,  i.e. 

which, after some rearrangements, yields the desired result 

which we shall use to generate the wavenumber k, from the solutions of the 
Orr-Sommerfeld equation. For the fastest growing mode (cos$ = l) ,  (27) becomes 

J:l (u*B2u + v * g 2 v )  dy 

I:, (u*u+ w*w) d g  
kt  = 

This result is intuitively appealing since kt is found to be the average of the operator 
d2/dy2 over the flow in the y-direction. The numerical results of table 3 lend 
themselves to an interesting physical interpretation since one can notice that 

k, cc RL, (29) 
where we have used (13 )  and (14) to translate the values of Rexp of table 3 into R,. 
It is well known (see Drazin & Reid 1982, figure 4.5) that the width of the viscous 
sublayer is proportional to R;; and (29 )  confirms this fact, lending physical support 
to the derivation of k, we have suggested and to the transition from R, to Rexp as 
suggested by (13) and (14). 
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ReXl, = 12300 R,,, = 28600 Re,, = 30800 R,,, = 50000 

kD 10n,/n, kD 10ns/n., kD lOn,/n, kD 10n,/n, 
8.631 0.123 10.533 0.173 10.700 0.168 12.74 0.410 
9.081 0.291 11.265 0.414 11.256 0.356 14.51 0.838 
9.588 0.447 12.113 0.643 11.886 0.537 16.37 1.19 

10.144 0.589 13.053 0.849 12.578 0.709 18.85 1.41 
10.739 0.713 14.068 1.025 13.323 0.867 21.33 1.42 
11.369 0.813 15.147 1.158 14.112 1.006 24.0 1.08 
12.031 0.886 16.285 1.234- 14.940 1.123 27.1 0.1 17 
12.721 0.927 17.479 1.254- 15.804 1.212 
13.441 0.930 18.732 1.183 16.702 1.268 
14.189 0.889 20.053 1.003 7.634 1.283 
14.972 0.796 18.599 1.251 

19.603 1.160 15.794 0.645 
20.650 0.998 

____ - __ 

__ __ 
~~ - 

- .- 

- - - - 
- __ __ - 

. __ - - - .- - 
TABLE 2. The growth rate ,n,(k) 11s. k from a solution of the Orr-Sornmerfeld equation for four 

values of the Reynolds number, R,,,. (The unit n,  is given by (23 ) . )  

Re,, = 12300 R,,, = 30800 Re,, = 50000 

k ,  kYD kLD k,D k,D kYD 
0.453 8.62 0.425 13.3 0.32 12.7 
0.48 9.07 0.485 15.8 0.36 14.5 
0.507 9.58 0.505 16.7 0.40 16.6 
0.533 10.1 0.525 17.6 0.44 18.8 
0.56 10.7 0.545 18.6 0.48 21.3 
0.587 11.4 0.565 19.6 0.52 24.0 
0.613 12.0 0.685 20.6 0.56 27.1 
0.64 12.7 0.805 21.7 

- 0.825 22.9 
_. - 

- _. __ 
TABLE 3. k ,  as a function of k ,  computed from (28) for three values of the Reynolds number 

7. The results for n, (k )  and k ,  
We have solved the Orr-Sommerfeld equation (20) for four values of Rexp : 12300. 

28600, 30800 and 50000. The first three values correspond to the experimental 
values of Laufer (1951) and Hussain & Reynolds (1975). I n  table 2, we present the 
values of n,(k) in units of n,, equation (23), as a function of the dimensionless 
wavenumber kD and in table 3 we give the values of k, ‘us. k,. In figure 2 ,  we plot 
nJn,  us. kD for different values of the Reynolds number. 

8. Solutions of the turbulence equations 
The function n,(k) was used to solve both the DIA and the GlSS models, (1)-(5) 

and (7)-(8). In each case, we computed several quantities of interest that we discuss 
below. 

( i )  Turbulent energy spectral function, F(k) .  In figure 3 we plot 

F(k) /F,  us. kD, F* = UiD = ( v2 /D)  RExp, 
calculated using the GISS model. In  figure 4, we compare the GISS and DIA results. 
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10 20 30 40 50 
kD 

FIGURE 2. The growth rate n,(k)  vs. k in units of n*, equation (23), as solution of the 
Orr-Sommerfeld equation for Relip = 12300, 30800, and 50000. 

kD 
FIGURE 3. The GISS turbulent energy spectral function F ( k ) ,  in units of F*, equation (30), v8. k 

for Re,, = 12300, 30800, and 50000. 



14 V. M .  Canuto, 0. J .  Hartke, A .  Battaglia, J .  Chasnov and G .  F. Albrecht 

10 20 30 40 SO 60 70 80 90 

kD 
FIQURE 4. A comparison of the GISS and DIA spectral functions for Rexp = 30800. (Same units 

as in figure 3.) 

1 

100 

e(k) x lo5 
8 .  
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10 20 30 40 50 60 70 80 90 
kD 

I0 

FIQURE 6. The turbulent viscosity v , (k)  vs. k, equation (a), in units of Y+, equation (32), for 
several values of R,,,. 

(ii) The energy e(k) .  In figure 5 we plot the quantity 

E(k)/e* VS. kD, e* = q / D  = ( v ~ / D ~ ) R : ~ ~ ,  (31) 

where e(k)  is defined in (2). (The physical units of E are erg 8-ls-l.) 
(iii) The turbulent viscosity, v,(k).  In figure 6 we plot 

v , (k) /v ,  V S .  kD, v* = U,D = vRexp, (32) 

where vt(k)  is the turbulent viscosity defined in (4). The largest value of the turbulent 
viscosity is attained a t  k = k,, where k, is the smallest allowed wavenumber. Taking 
the limit k + k o  in ( l ) ,  we obtain 

vt(k,) = L. (33) n ( k  1 

(iv) One-dimensional spectra. Both Laufer (1951) and Hussein & Reynolds (1975) 
present their experimental results in terms of the one-dimensional spectral energy 
function defined in terms of the three-dimensional F ( k )  as follows (see Hinze 1975, 
equations 3.72, 3.48. 3.47) : 

E,(k,)  = :[: k-lF(k) ( 1 - k ; / k 2 ) d k .  (34) 

We have computed E,(k , )  for the case corresponding to the experimental condition 
in the Hussain and Reynolds paper, i.e. Rexp = 28600, U, = 1350 cm s-l, D = 3.18 
cm. The results are presented in figure 7. 



16 V.  M .  Canuto, G .  J .  Hartke, A. Battaglia, J .  C h a s m  and G .  F .  Albrecht 

t 

I 

k ,  (cm-') 

FIGURE 7 .  Comparison of the theoretical one-dimensional spectral function, equation (34), vs. k, 
(full line), with the one measured by Hussaiii & Reynolds (1975) for Rex, = 28600, U, = 1350 cm 
8-l and D = 3.18 cm. 

On the other hand, Laufer (1951) p-resents his experimental data in terms of the 
function 

&(n) = --E,(ki) 2n (lorn -E,(k,) dk, r (35) 
UO 

where 2nn = k, U,. The comparison between Laufer's measured spectrum (Rex* = 
30800, U, = 728 em s-l, D = 6.35 cm) and the theoretical results is presented in 
figure 8. 

(v) Turbulent velocities and scales of turbulence. Laufer (1951) and Hussain & 
Reynolds (1975) also provide experimental data for other quantities of interest, 
namely 

( a )  turbulent energy 
( u ~ )  = JornF(k) dk,  (36) 

(b)  turbulent velocity 

(u;)i = (u;): = (u$ = (;(%z))i, 137) 
(c )  Taylor microscale A, 
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1 10 102 103 104 

n (c.P.s.) 
FIGURE 8. Comparison of the theoretical one-dimensional spectral function defined by (35) with 
the one measured by Laufer (1951), corresponding to Re,, = 30800. U, = 728 em 5-l and D = 6.35 
cm . 

Re,, = 12 300 

GTSS DIA Exp. 
{uz) x 103 0.920 1.14 _ _  
(u$ x 102 1.75 1.95 3.6 
v, x 104 6.30 

105 4.70 5.43 - 
4 0.192 0.092 0.11 

0.857 1.05 - *4 ?. z, x 103 10.3 9.97 - 

__ - 

Re,, = 30500 

GISS DIA Exp. 
1.16 1.21 - 
1.96 2.01 3.0 
5.04 
7.12 7.53 3.62 
0.053 0.051 0.095 
0.69 0.80 0.63 
4.70 

- - 

- - 

TABLE 4. Turbulent velocities and scales of turbulence 

Rexp = 50000 

GISS 
1.25 
2.00 
4.30 
9.08 
0.141 
0.49 
- 

(d  ) turbulence macroscale A ,  

( e )  Kolrnogorov scale 1, 1, = (v3/e)i .  

In table 4, we present (u.'> in units of q, (u;); in units of U,. vt = vt(k,) in units 
of U,D: c in units of q / B .  and A,, A,, and I ,  in units off). Experimental data are 
included where available. 
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9. Pressure fluctuations in a turbulent channel flow 

by the solution of the Poisson’s equation 
We begin by considering that in an incompressible fluid, the pressure p ( x )  is given 

32vr(x) Vj(X)  VZp(x) = --p axi axj 

where u(x)  is the total velocity, p is the constant density, and the summation 
convention has been employed. If, as usual, one splits vi into a fluctuating part ui and 
a mean field U,, the right-hand side of (41) is seen to contain three contributions: a 
term in uiuj,  one in the form us Uj,  and one in Ui U,. Following Kraichnan (1956a, 
b ) ,  we shall assume that the cross-term is much smaller than the other two so that 
from the solution of (41), one can construct the fluctuating pressure, i.e. 

where T-T indicates the contribution arising from the turbulence-turbulence 
interaction and T-M indicates the one arising from the interaction between the 
turbulence and the mean flow. It is a fact, which we have verified numerically, that 

n T - ,  9 17T-T. (43) 

The expression for 17T-T was first evaluated by Batchelor (1951). The result is 

sin4 6 E ( k ’ ) E ( k - k ’ ) -  kf2 dk‘ sin 6 do. 
Ik - k’I4 (44) 

The expression for 17T-M is much more difficult to compute. To treat the physical 
problem under consideration, we need an expression that depends not only on k but 
also on the coordinate variable across the channel of finite width A ,  i.e. 

nT-M(k) -f nT-M(k,xz; A ) .  (45) 

The only expression for 17T-M available in the literature is due to Kraichnan (19566) 
(his equation 5.20), which yields the pressure at the lower boundary of a semi-infinite 
medium (a flat plate), i.e. 

f l T - M ( k , O ;  a). (46) 

Since we plan to study the propagation of an electromagnetic beam in a channel flow, 
Kraichnan’s expression is not applicable to our case. We shall therefore derive the 
expression for 17T-M(k,x2) = 17T-M(k,x2; A ) .  

Since in the case of a channel flow, two directions, say x1 and x3, in the plane of the 
mean flow can be considered to be homogeneous, one can perform a Fourier 
transform of (41) on the variables xl, xg, and t .  Equation (41) then becomes 

where K~ = k i+k: ,  and 

p(x2, K, w )  = (27t)-g p ( x ,  t)  e-i(k1zlfk3z3-‘0t) dx, dx, dt. (48) s 
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Equation (47) is a second-order, inhomogeneous differential equation whose solution 
can be written as 

(49) 

The two constants of integration a and b must be determined by imposing the 
boundary conditions 

dz; er(z2-z;) T(& K, 0) .  l2 
-P(% K, 0 )  I = o ,  

1 I’ 

2Kp(Z2, K, O )  = dx; e-x(z=z;) T(xi, K, O )  - r 
(50) 

d 
dx2 x2-0. A 

since the fluid is bounded by two walls at x2 = 0 and x2 = d = 2 0 .  The final result is 

~ ( ” 2 ,  K, W )  = dxi gZ(x2, xi ; K )  T(xi)- dx;g1(x2, xi ; K )  T(xL), (51) 

where, for the sake of simplicity, we have explicitly written only the z2 dependence 
of T,  i.e. T(x,) = T(x,,K,w), and where we have defined two functions g1 and g2 as 

K ~ ~ ( x ~ , x ; ;  K )  = sinh K ( x ~ - - x ; ~ )  (52) 

By taking the limit d -+ co and x 2 - + 0 ,  (51) reduces to (3.9) of Kraichnan (1956b). (In 
the case x2 = 0 and non-zero A ,  (51) does not reduce to (3.11) of Kraichnan (1956b) 
since the latter is missing a factor of 2 in front of the second term.) Equation (51) is 
the basic ingredient of our calculations since it gives the value of the fluctuating 
pressure a t  any given point in a channel of full width d = 2 0 .  From (51) we obtain, 
with a slight change of notation, 

iP(x,, K,u)12 = fi dxfi  dyg,(z,, x; K ) g 2 ( x 2 ,  y ;  K )  (T*($, K, w )  ~ ( y ,  K, w ) )  

where the asterisk denotes complex conjugation and the angular brackets denote an 
ensemble average. 

As is well known, the largest contribution to T(x,) comes from the interaction of 
the turbulent field with the mean flow, i.e. 

(55) au2 T(x,  t )  = 2ps(x2) - 9 

ax1 

where it has been explicitly indicated that in the directions x1 and x3 the fluid is 
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homogeneous, R,, is the two-point velocity correlation function, Cl = x;-xI,  and 
c3 = xi-x3. Taking now 

R2,(x2, xi, cl, Q, t )  = (2x) - - i  d2 Kdwei(K’C+Wt) R2,(x,, x;, k ,  w )  

S(X2, X i ,  K ,  w )  = 4p2s(X,)s(X;)K~R,2(x2, X ; , K ,  0). 

(58) s 
and using an analogous expansion for S ,  we have 

(59) 

The relation between (T*(x ,  K, w )  T ( y ,  K, w ) )  in (54) and the quantity S(x2,  x2,  K ,  w )  is 
(see Kraichnan 1956b) 

(T*(X, K ,  W )  T(y, K ,  0 ) )  = (27T-t#(X2, X L ,  K ,  13). 

Using the reality of R,,(x, t ) ,  we write 

(60) 
( 2 x ) i  

R&,, xi, K, w )  = - C COSkp’(x,-x;)R2,(k, w ) ,  
A 

where kp) = 2xn/A .  Equations (57)-(60) are substituted in (54) and the result is 
integrated over all W .  Using the relations 

where E ( k )  is the velocity spectrum for homogeneous turbulence, and where 

<p2(x,)) = IP(X2, k ,  w)12 d2KdfL), (63) i 
we obtain, after a series of lengthy integrations over the variables x and y in (54), the 
final result 

( p 2 ( x 2 ) )  = [d’kZI(k, x,), (64) 
P2 

4 K  
cos kp’ x2, (66) 

k2A 
cosh K($A - x2) 

T,(k, x2) = 

4K coskp)x,+--sinkp)x,, lc2A 

(67) 
with S(x) the Dirac delta function. To be consistent with the spirit of the model 
adopted in this paper, the velocity profile used in performing the integrations that 
lead to (64) was U(x,) = sox2(1-x2/A), where so = T ~ / V .  This gives for the shear 

s (x2)  = so l--x2 . 

However, it is clear that  the above formalism is valid for any shear. 
Using the spectral functions E ( k )  derived from the DIA and the GISS model, we 

have computed the pressure spectral function n ( k )  and then integrated over all 
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Y l  D 
FIGURE 9. The value of the fluctuating pressure, in units of p q  computed from (64), as a function 
of distance across the channel of width A = 20. The results are computed using the GISG model. 

p 
Pu: 

50 

5 -  

I I I I  
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Y l D  

FIGURE 10. Same as in figure 9, but computed using the DIA model. 

wavevectors k. The resulting pressures, in units of p q ,  are presented in figures 9 and 
10. As one can see, for Rexp = 5000, the calculated value of the pressure at the wall 
is 6.31, while experiments of Blake (1970) and direct numerical simulation of Handler 
et aE. (19841, yield a lower value, i.e. 3.22, the discrepancy being due most likely to 
anisotropy effects (see 3 11). 
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10. Propagation of electromagnetic waves in a turbulent channel flow 
An important application of the previous formalism is to the case of propagation 

of a laser beam through a turbulent channel flow medium. Of primary importance is, 
for example, the evaluation of the degree of attenuation in the beam intensity I. 
Using the formalism developed by Hogge, Butts & Burlakoff (1974), the total beam 
intensity I, as a function of the coordinates xo and yo in the plane perpendicular to 
the direction of propagation, is given by 

A2 
(Af )2 

4 x 0 ,  Yo) = X e x P  ( - g;) 

where p = 2 x / h  and 

wig = x:+x;+y:+y;, p2 = (x1--x2)2+(y1-y2)2, (70) 
Here, h is the wavelength, f the focal distance, and w1 the spot size. In (69), C,(p) is 
the phase autocorrelation function and IT$ its value at p = 0. By separating the 
integrand in (69) so as to exhibit the coherent and incoherent parts of the total 
intensity, one can then evaluate the corresponding powers obtained by integrating 
the intensity over the variables x,, and yo. A simple integration then gives the exact 
result 

which is often written as 

since in most cases u$ is smaller than unity. The quantity ri = C4(0) is defined in 
Tatarskii (1961) as 

g; = p 2 J d s k [ d f [ d r c o s ( k 2 ( f - 5 " ) )  cos(w(L-f))cos(w(L-r)) djn(k,x',d') 

(71)  

(72) 

P=Pinc/Ptotal = 1--xp(-a$), 

P = r$/(l+r$), 

(73) 

where (74) 

the E' and integrations are over the photon optical path of length L ,  which is 
related to the full channel width 2 0 ,  x' = ( 2 0 / L )  &, and d' = ( 2 0 / L )  5". One of the 
integrations over optical path in (73) can be done by changing variables to sum and 
difference coordinates, +(&+r) and c-5". We then assume that djn is a locally 
isotropic field, i.e. a function only of the sum coordinates, so that the integration over 
the difference coordinates can be done analytically. 

The function dja  is defined as the spectral function of the square of the refractive 
index fluctuations, i.e. for mean flow in the x1 direction with the coordinate system 
oriented such that x2 is the coordinate variable spanning the channel with 0 < x, < 
d = 20, we have 

<n'2(22)> = d3k@,(k, z,), (75) I 
where we have taken from Monin & Yaglom (1975) that 

n = 1 +n' = 1 + u p ,  a = 7.9 x 10-8g(A)/T. (76) 

Here the pressure p is measured in c.g.s. units and the temperature T in K. The 
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slight dependence on the wavelength h is represented by the function g(h), where 
g(h = ly) = 1, g(h = 0 . 5 ~ )  = 1.02, and g(h = 0 . 2 ~ )  = 1.18. It then follows that 

where p is the density in c.g.s. units. Using (42), it follows that 

Q n ( k  z2) = (@P)2n(k, 2 2 ) .  (78)  

10.1. The quantity p a 2  

Using the equation of state and the sound speed c, 

8.32 x 107 P 
kNA T -  pT, csa=y-, 

P 
P=-P - 

P 
(79) 

where k is Boltzmann’s constant, NA is Avogadro’s number, ,LA the molecular weight 
(gm/mole), and y the ratio of specific heats, we derive using (76)  

pau;4 = y * W ,  (80) 

y* = 6.5696yp/yU, M = Uo/cs. (81) 

where the constant y* (p is in c.g.s. units) and the Mach number M are defined as 

10.2. The results 

In  table 5 ,  we present the values of 102P, equation (71) ,  calculated using (73), (78), 
and (65).  The spectral function E ( k )  is calculated using both the GISS model and the 
DIA. For each entry, Rex,, and M ,  the corresponding U,, D (the channel half-width), 
and L (optical path) can be computed from the following relations ( p  in atmospheres 
and p in c.g.s. units) 

V 
U,(cm/s) = c,M = 103M(yp/p)i, D(cm) = -Rexp, L(cm) = 2(l+n$D(cm). 

u, 
The values of the viscosity v (in cm2 s-l), density p (in g cm-,), and the refractive 
index n, are given in table 5 caption. A plot of 102P versus the Mach number is 
displayed in figure 11 for d = 2, 3, and 5 mm. 

11. Anisotropy 
One possible reason for the discrepancy between the calculated and measured 

values of the pressure fluctuations a t  the wall is the lack in our calculation of the 
inclusion of anisotropy effects induced by the mean flow. This may also be the cause 
of the discrepancy between the calculated and observed one-dimensional energy 
spectra. Kraichnan ( 1 9 5 6 ~ )  suggested a simple model for an elongated eddy 
structure via a constant scale change in the direction of the mean flow. This simple 
model will be generalized here in order to  judge what qualitative effect anisotropy 
would have on the one-dimensional energy spectrum. 

We introduce a scale transformation for the wavenumber variables 

ki = k,, kj = k,, 
k k; = 

a(k‘) ’ (83) 
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M 

0.1 
0.114 
0.190 
0.2 
0.286 
0.3 
0.4 
0.5 
0.6 
0.7 

0.1 
0.2 
0.286 
0.3 
0.4 
0.477 
0.5 
0.6 
0.7 
0.715 

0.1 
0.2 
0.3 
0.4 
0.465 
0.5 
0.6 
0.7 
0.774 
1.16 

A GISS 
Rexp = 12300 

5.71 6.50 x 10-4 
5.00 8.49 x 10-4 
3.00 2.36 x 10-3 
2.86 2.59 x 10-3 
2.00 5.30 x 1 0 - 3  
1.90 5.82 x 10-3 
1.43 1.04 x 
1.14 1.62 x loe2 
0.952 2.33 x 
0.816 3.23 x 

lie,, = 30800 
14.3 9.04 x 10-3 
7.15 3.56 x 10-3 
5.00 7.38 x lo-' 
4.77 8.08 x 
3.58 0.144 
3.00 0.205 
2.86 0.225 
2.38 0.324 
2.04 0.438 
2.00 0.459 

Rex, = 50000 
23.2 3.33 x lo-* 
11.6 0.133 
7.74 0.297 
5.81 0.530 
5.00 0.714 
4.65 0.827 
3.87 1.19 
3.32 1.59 
3.00 1.97 
2.00 4.35 

DIA 

1.04 x 10-3 
1.36 x 10-3 
3.77 x 10-3 
4.16 x 10-3 
8.48 x 10-3 
9.35 x 10-3 
1.66 x 10-3 
2.59 x lo-* 
3.72 x 
5.07 x lo-* 

1.81 x lo-' 
7.23 x 10-2 

0.148 
0.162 
0.289 
0.410 
0.450 
0.649 
0.883 
0.920 

4.30 x 
0.183 
0.413 
0.734 
0.987 
1.14 
1.64 
2.23 
2.71 
5.99 

TABLE 5. Values of 10zP, equation (71), and full channel width A (in mm) for different Mach 
and Reynolds numbers. Gas properties : v = 8.6 x g ~ m - ~ ,  p = 2 atm, 
p = 28 g mole-'. Optical properties : wavelength h = 0.53 km, refractive index n, = 1.53. 

cmz s-l, p = 2.07 x 

where 1 is the streamwise direction, 2 is the direction across the channel, and a(k) 
is a scale function. The primed variables, i.e. those for which the scales are stretched 
in the streamwise direction, are the physical variables. Since we only know E ( k )  for 
the isotropic case (in which there is no stretching), we derive a relationship between 
the velocity covariance tensors in the primed and unprimed systems. For 
homogeneous and isotropic turbulence, the velocity correlation function djij(k) is 
given by (Batchelor 1953, equation 3.4.12) 

where d,, is the Kronecker delta, E ( k )  is the energy spectrum, and 
r 

(u') = d3kGii(k). J 
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10’P 

0 0. I 
M‘ 

0.2 0.25 

FIGURE 11. The quantity 102P, equation (71), versus M4 for three values of the channel width 
A = 2 ,  3, 5 mm. Solid lines, GISS; dashed lines, DTA. 

The velocity covariance is a second-rank covariant tensor. Applying the coordinate 
change (84) to Qii(k) yields 

Ql1(k‘) = N a(k’) + k;, Qll(k), (86a)  

(86k  c )  @22(k’) = NQ22(4> @ 3 3 W  = N@33W, 

i aaJ 
where a normalization coefficient N has been added to these expressions to ensure 
that the mean kinetic energy is identical to  that of the original flow. The new 
correlation tensor now describes a flow for which all lengths are elongated by a factor 
a in the x1 direction. 

To calculate N ,  note that the kinetic energy (per unit mass) in the new coordinate 
system is 

(87) 
d3k i/@,,(k’) d3k’ = t N / [ h :  @,,(k) + GZ2(k) + @33(k)] ___ 

2 hl h, h3 ’ 
2 aa aa 2 

where h, = a+k;- ak; ’ hi = l+ki2(@) , hi = l + k i 2 ( 8 )  . 

To ensure that the mean kinetic energy is identical to the original flow, (87) is 
equated to ;(Rll +R,,+R,,) = a&, for isotropic Ric, (R, = Rii = JQii(k) d3k, no sum 
on the indices). 

For the case of a = constant, the resulting equation is solved for N and we find that 

3a 
a2+2’  

N = -  a constant. 

There is a second choice that can be made for the function a for which the 
normalization coefficient N can be easily computed, i.e. 

a(k’) = 1 +k,, /k;,  (89) 
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1 10 102 103 104 
n (c.P.s.) 

FIGURE 12. Same as figure 8, but also for a = 4 and 8. 

where k, is a constant. (In practice, to avoid the divergence at  the origin a cutoff 
wavenumber was introduced in this function below which a was taken to be 
constant.) With this choice of a, h, = h2 = h, = 1 and we find that N = 1. 

1 1.1. One-dimensional spectra 
The one-dimensional energy spectrum in the physical coordinate system is given by 

E,(ki)  = 2 dzd@ll(kf),  (90) s 
where d2 = kt2+ kiZ = K ~ .  After changing the variable of integration to 

k2 = kt+K2 = a2k;+K2,  

the one dimensional energy spectrum in the physical variables is 

E,(ki) = N J  a, E(k)  , h : k ( l - T ) d k .  a2ki2 
4 

Figure 12 is a plot of the observed E,(k;) for Rexp = 30800 (actually, we plot Fgz(n), 
see (35) )  compared to that calculated using the DIA spectrum with constant a. The 
scale factor a is a free parameter and figure 12 displays the results for a = 1, 4, and 
8. This procedure has provided a qualitative improvement over the a = 1 result. The 
turnover of the spectrum, originally occurring at  n - 200 s-,, has moved to 
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1 10 10' 10' 1 0 4  

n (c.P.s.) 
FIGURE 13. Same as figure 8, but for a = a, for k;D d 1 ,  and a = l + ( a , - l ) / k ; D  for k;D > 1 ,  

with a, = 5. This result was calculated using the DIA turbulence spectrum. 

frequencies (i.e. wavenumbers) beyond the lowest observed, in concert with the 
observations. 

Figure 13 is a plot comparing the experimental data for the one-dimensional 
spectrum and a calculation with a given by (89). We have chosen the cutoff 
wavenumber to be k;D = 1,  below which we take a = a, = 5.  The constant k, is 
chosen to make a continuous through this cutoff, i.e. k, = (ao- l)/D. Obviously, the 
inclusion of anisotropy in this way such that the elongation of the eddies decreases 
for the smaller scale sizes has greatly improved our fit to the data. Note that the 
value of a, which provides such a close fit to the data is in the range indicated by the 
constant-a results. 

Naturally, it is not to be expected that the procedure presented here would provide 
a perfect fit to the data. However, the results do suggest that accounting for 
anisotropy considerably improves the fitting of the one-dimensional spectra. It is 
also to be noted that there is no unique choice for the anisotropy function u. We have 
used the simplest choice, constant a, and a second more physical choice for which the 
stretching of scales in the downstream direction decreases with decreasing scale size. 
With increased complexity of the modelling of the effects of anisotropy, we have seen 
our fit to the data improve markedly. The calculations of the effect of anisotropy on 
the pressure fluctuations and scattering of a monochromatic beam presented below 
were done using a constant a. 

2 FLY 211 
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11.2. Pressure juctuations 
For the anisotropic case with constant, a, the calculation of the pressure fluctuations 
is similar to that done in $9. For the amplitude of the pressure fluctuations, we write 

4K’ cosk;x;+-sinIc;xi, kf2A (95) 

with &(x) the Dirac delta function, k p )  = 27cn/A, and d2 = ki2 + ki2. In (92)-(95), the 
integration variables and position variable have been written as k‘, and x;, 
respectively, in order to emphasize that these are the physical coordinates, i.e. those 
stretched in the streamwise direction. Although we only know E(k)  in terms of 
wavenumbers from which the stretching has been removed, we do know how to relate 
cPij(k‘) to cPii(k). Now change variables in the integral from k’ to k .  Working in the 
coordinate system defined by 

k, = ksinecosq5, k, = kcos8, k3 = ksinOsin$, 

the quantities K ’ ~  and kt2 are given by 

Using d3k‘ = d3k/a, we have from (92) 

(96) 

(97) 

where 

and rl and r2 are given by (94) and (95). Since the integrand is symmetric in the 
summation index n and the n = 0 term vanishes, we find for the amplitude of the 
pressure fluctuations 
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c 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Y l D  
FIGURE 14. Same as figure 10, but for a = 4. 

p 
Pu: 

where 

15.0 

12.5 - 

2.5 - 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Y / D  
FIGURE 15. Same as figure 10, but  for a = 8. 

Equation (100) was integrated numerically using the DIA spectrum for a = 4,8, 
and the results for Reynolds numbers of 12300, 30800, and 50000 are displayed in 
figures 14 and 15. Relative to the a = 1 case, the pressure a t  the wall is reduced by 
a factor of approximately l/a, i.e. with the pressure in units of p q ,  
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R e x ,  M M b  a = l  a = 4  a = 8  

12300 0.286 0.252 8.48 x 10-3 2.80 x 1 0 - 3  7.86 x 10-4 
d = 2 m m  

30 800 0.715 0.638 0.920 0.315 8.89 x 
50 000 1.16 1.04 5.99 2.25 0.662 

d = 3 m m  
12300 0.190 0.168 3.77 x 10-3 1.24 x 10-3 3.49 x 10-4 
30 800 0.477 0.425 0.410 0.140 3.95 x 
50 000 0.774 0.694 2.71 1.01 0.295 

d = 5 m m  
12 300 0.114 0.101 1.36 x 10-3 4.47 x 10-4 1.26 x 10-4 
30 800 0.286 0.255 0.148 5.05 x 1.42 x 
50 OOO 0.465 0.416 0.987 0.363 0.106 

TABLE 6. Values of 102P for full channel width d = 2, 3, and 5 mm 

The pressures a t  midchannel have undergone relatively small changes relative to the 
isotropic (a  = 1 )  calculation, i.e. 

?)midch(a) ?)midch(a = ’ ) .  (103) 
It seems clear that  the inclusion of the effects of anisotropy in the calculation of the 
amplitude of the pressure fluctuations has greatly improved our predictions of the 
wall pressures. 

11.3. Fraction of scattered power, P 
We have also applied the above procedure to  the modelling of the effects of 
anisotropy on the attenuation of a laser beam propagating through a turbulent 
channel flow. With the fraction of scattered power defined by (72) and (73), we 
integrated (73) over the physical variables, using the DIA spectrum and the 
expressions from above for the anisotropic pressure function. The scattered fraction 
P was calculated for channel width8 A = 2 ,  3, and 5 mm at a variety of Mach 
numbers and the results are presented in table 6 and displayed in figure 16 along with 
the experimental results of Albrecht &. Sutton (1987) at these values of A .  The errors 
on the experimental results are roughly f 35 %. The Mach number Mb used in figure 
16 is the Mach number based on the bulk velocity, Um. Using (14a)  and (15b), we find 
that M,, is related to the Mach number M (based on the midchannel velocity U,,) by 

It was found that the model fitted the data very well with a = 6 for A = 2 mm, 
a = 4 for A = 3 mm, and a = 5 for A = 5 mm. These are the best-fit results; how- 
ever, within the errors, the data can be adequately fitted for a = 5 .  It was found that 
over the range 1 < a < 10, the scattered fraction P decreases with a roughly as 

P(a)  x ]’(a = 1) e ~ ( ~ - l ) ’ ~ .  (105) 
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d = 5 m m  
1.5 - V 

1.0 - d = 3 m m  

1 0 3 ~  

d = 2 m m  
a = 6  

I 
0 0.1 0.2 

M:, 
FIGURE 16. The quantity 102P versus the fourth power of the bulk Mach number, ME (see text), 
for three values of channel width A = 2, 3, and 5 mm. The best-fit value of a is shown. The 
experimental data (from Albrecht & Sutton 1987) are represented as V for the 5 mm results, x for 
the 3 mm results, and 0 for the 2 mm results. 

12. Parameterization of the results 
The scattered fraction P for an isotropic system (a = 1 )  is given by 

P(a = 1) = l-exp(-a;). 

P ( ~ )  = P ( ~  = 1) e-(=-1)/3. 

(106) 

(107) 

9 -  0 Y P P  P dRexp 1 (108) 

As we have seen, the dependence on the general anisotropy parameter a can be 
represented by 

We have managed to write a$ as 

g2 - C D3.644M5.644 2.822 -2 0.822 1.17Sv-1.644 

or, equivalently, 2 2  

u: = C, D 2 M 4 y  f (Rexp), 

where D is the channel half-width in mm, M is the Mach number based on the 
midchannel velocity U, (see (104) for the conversion to Mb, the Mach number based 
on the bulk velocity), y is the ratio of specific heats, ,u is the atomic weight, p is the 
pressure in atmospheres, p is the density in g ~ m - ~ ,  v is the viscosity in om2 s-l, 
Rexp = U,D/v with U, the velocity of the flow at midchannel, C, = 7.6288 x lo2, 
and C, = 0.38883. The functions g(Rexp) and f(ReXp) are given by 

f (Rexp ) 
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R,,, x 10-4  

FIGURE 17. The functions f and g used for the parameterization of the scattered fraction P are 
plotted here for lo4 < Rex, < 5 x lo4. Note that for Rex, 2 2.5 x lo4, f is approximately constant, 
thus P will increase as M4 for constant A .  

with a, = - 1.0, a, = 2.7798 x a2 = - 1.6914 x lop8, 
a3 = 4.5123 x a4 = -5.6832 x lo-", a5 = 2.7697 x (112) 

Figure 17 is a plot of the functions f (Rexp) and g(R,,,) for lo4 < Rexp < 5 x lo4. Note 
that in the range 2.5 x lo4 < Rexp < 5 x lo4, the function f (Rex,) is approximately 
constant. The lower end of this range, i.e. Rexp = 2.5 x lo4, corresponds to M t  = 
7.1 1 x lop2 (2 m r n / ~ I ) ~  for the gas parameters used here and A = full channel width. 
Thus for M t  greater than this, the quantity gi will increase with Mach number as M4 
for constant D and increase as D2 for constant M .  Experimentally, it has been found 
a t  constant M ,  P increases as Da with a = 1.75k0.25. Equations (106)-(112) 
reproduce the theoretical results to better than 5 % .  

13. Summary and conclusions 
By inspecting our results, i t  can be concluded that the GISS model and the DIA 

provide a reasonable first description of both turbulent bulk properties and 
properties that  depend strongly on the large-eddy part of the energy spectrum. 
Several reservations have to be discussed and directions for future work pointed out. 

First, the DIA yields larger values for the wall pressure and fraction of scattered 
power than the GISS model. This behaviour can be understood by inspecting, for 
example, (65) which shows that the largest contribution to n ( k ) ,  and ultimately to 
P ,  comes from the small-k region of the turbulent energy spectrum. As one can see 
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from figure 4, a t  low wavenumbers the GISS E(k)  is ‘skinnier’ than the one derived 
from DIA. This means that the contribution to n(k) from the GISS model begins 
only at, say, kD = 15, while in the DIA case the contribution begins earlier, i.e. a t  
smaller wavenumbers. (The DIA energy spectrum extends in principle to zero 
wavenumber, but the integration over the angles in (64) and the presence of the delta 
function in (65) force the first contribution to begin a t  kD = 7c.j The physical reason 
behind the different low-k behaviour of the two spectral functions is known. The DIA 
includes backscatter, i.e. energy transferred from the high-k region into the low-k 
region. By contrast, the present version of the GISS model is a cascade model with 
no backscatter as yet. While this limitation had been recognized in the earlier work 
of Canuto et al. (1987) and Hartke et al. (1988), i t  had never been evidenced as clearly 
as in the present case, since our earlier works were primarily concerned with the 
description of turbulent bulk properties which are relatively insensitive to the small- 
k behaviour of the turbulent spectral function. Work to include backscatter in the 
GISS model is now in progress. 

A second comment concerns the role of shear and the way it has been treated in 
the present paper. The work of Tchen (1953) has demonstrated that the shear may 
play two roles ; as a source of energy and as a force interacting with the eddies. While 
the first role is always present, the second becomes important only when the shear 
s is of the same order or larger than the eddy vorticity in a given wavenumber region. 
When this is the case, a resonance takes place which may be more important than 
the effects of nonlinear transfer among the eddies, represented by the function T(k) 
in ( 1 ) .  When this type of resonance dominates over the other forces, Tchen’s model 
predicts the existence of a k-I region in the energy spectrum, which has indeed been 
observed. Our model does not include this resonance effect, the shear playing in fact 
only one role, that of a source of energy drained from the mean flow. This can clearly 
be seen by inspecting (1)  and (2) where the presence of shear is confined entirely to 
the left-hand side of the equation in the rate n,(k), whose form is given by (24). It is 
clearly seen that of the two terms, the first, Im ( Q ) ,  is proportional to the shear, U’(y), 
while the other term represents a sink due to viscosity. 

A third comment refers to the choice of the growth rate. Orszag & Patera (1983) 
(hereinafter referred to as 0-P) have pointed out that the adoption of a Poiseuille 
flow with a central line velocity U, (used to construct a Reynolds number which is 
then identified with the experimental value), leads to a growth rate that, being viscid 
in nature is naturally rather slow. In  fact, the fastest instability occurs a t  around 
R = 48000 and its maximum value (n,/n,) is only 0.0076. 0-P discovered that there 
is a secondary, three-dimensional instability that grows much faster than the original 
instability. The 0-P discovery is an important one in many respects, but particularly 
when one is concerned with the problem of the transition between laminarity and 
turbulence, since it explains in a natural way (i.e. without free parameters) 
experimentally important features that would otherwise be left unexplained (see 
Stuart 1981), the most important being the well known fact that linear analysis 
predicts a breakdown of laminarity a t  Rexp = 5772 while the experimental value is 
close to Rex,, - 2500. It is much less clear, however, whether the 0-P secondary 
instability and its corresponding growth rate is directly relevant to our problem, 
where we have to deal with one important aspect that does not enter into the 0-P 
problem, namely the fact alluded to previously, that in the construction of n, for our 
problem we must somehow take into account the renormalizing effect of the presence 
of turbulence itself. The physical model that we have proposed in $4  can be viewed 
as a way to renormalize the central line velocity due to the presence of turbulence. 
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Another important aspect of the physical effect brought about by the existence of the 
0-P secondary waves is displayed in figure 4 of 0-P, where it is shown that the 
growth rate versus Reynolds number curve reaches a maximum and then saturates 
rather than decreasing as it would in the case of a viscid instability. Two facts must 
be noticed. The maximum value of the 0-P growth rate is around 0.1, which is the 
same as we have obtained using our renormalization (see figure 3). Secondly, as it is 
also clear from figure 2, in the region of Reynolds numbers of interest in this problem, 
the growth rates have similar maximum values, thus indicating that we are dealing 
with a region where the stabilizing effect of decreasing viscosity has not yet taken 
place. The numerical similarity between our results and those of 0-P constitutes, 
however, no guarantee that the 0-P mechanism (to generate a growth rate) and our 
method are physically equivalent. Since our results for the bulk properties are in 
general smaller than the experimental values, it is conceivable that the use of an 0-P 
growth rate together with a renormalization of some of the physical parameters 
could yield better results. Since, however, the solution of the 0-P equation, which 
in turn requires the exact solution of the Navier-Stokes equations for the two- 
dimensional flow field, would be a non-trivial addition to our problem, we decided in 
this first paper to adopt the physical argument discussed above. The use of the 0-P 
growth rate mechanism is presently under investigation. 

In conclusion, while the use of theoretical models of turbulence has reproduced 
several properties of turbulent channel flow, limitations have also appeared. Work to 
include backscatter in the GISS model and to understand the role of the secondary 
instability is now in progress. 

The authors would like to thank H. Robey and S. Sutton for many helpful 
discussions and D. Henningson for providing the use of his Orr-Sommerfeld code. 
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